

Investigating the Biodegradation of Metallic Biomaterials Using HPC-Based Simulation Techniques

Mojtaba Barzegari Liesbet Geris Biomechanics Section, Department of Mechanical Engineering, KU Leuven, Leuven, Belgium

Biodegradable Metals

- Mg, Zn, and Fe
- Great mechanical properties
- Biocompatibility and contribution in metabolism
- Potential applications:
 - Cardiovascular stents
 - Orthopedic implants

Background

- Acetabular implants
- Total hip replacement
- Considering biodegradation behavior beside optimizing mechanical stability

(Source: 3D Systems Inc.)

Problem Definition

- Implants should be removed at the end of their lifetime
- Some extra bone is also removed along with the implant
- Making at least part of the implant from biodegradable materials

Objective

- Challenge:
 - Tuning the biodegradation to the regeneration of the new bone
- Can be solved by:
 - Mathematical modeling of biodegradation
 - Coupling biodegradation models with tissue growth models
 - Considering environmental effects

Model Workflow

Chemistry of Biodegradation

The model captures:

- 1. The chemistry of dissolution of metallic implant
- 2. Formation of a protective film
- 3. Effect of ions in the medium
- 4. Change of pH

Mathematical Representation

Chemical reactions

$$Mg + 2H_2O \xrightarrow{k_1} Mg^{2+} + H_2 + 2OH^- \xrightarrow{k_1} Mg(OH)_2 + H_2$$
$$Mg(OH)_2 + 2Cl^- \xrightarrow{k_2} Mg^{2+} + 2Cl^- + 2OH^-$$

Derived Partial Differential Equations

$$\frac{\partial C_{Mg}}{\partial t} = \nabla \cdot \left(D_{Mg}^{e} \nabla C_{Mg} \right) - k_1 C_{Mg} \left(1 - \beta \frac{C_{Film}}{[Film]_{max}} \right) + k_2 C_{Film} C_{Cl}^2$$
$$\frac{\partial C_{Film}}{\partial t} = k_1 C_{Mg} \left(1 - \beta \frac{C_{Film}}{[Film]_{max}} \right) - k_2 C_{Film} C_{Cl}^2$$
$$\frac{\partial C_{Cl}}{\partial t} = \nabla \cdot \left(D_{Cl}^{e} \nabla C_{Cl} \right)$$
$$\frac{\partial C_{OH}}{\partial t} = \nabla \cdot \left(D_{OH}^{e} \nabla C_{OH} \right) + k_2 C_{Film} C_{Cl}^2$$

Capturing the Biodegradation Interface

Constructing Computational Model

- Not feasible to implement models in sophisticated software packages
- Discretizing PDE equations, numerical computation
 - Finite difference method (time derivatives)
 - Finite element method (spatial derivatives)
- Adaptively refined mesh generation

Implementing Computational Model

- Mesh generation (SALOME, MMG), #Element ~ 10,000,000
- Weak form implementation (FreeFEM), #DoF ~ 2,000,000
- Parallelization is essential
 - High-performance domain decomposition (HPDDM)
 - High-performance preconditioners and solvers (PETSc)
- Paralleled IO postprocessing (ParaView)

Model Parameters Estimation

- Sensitivity analysis to get the important parameters in different diffusion regimes
- Using a Bayesian optimization algorithm for estimating the effective parameters
- Each optimization iteration takes several hours to complete (another reason for the necessity of parallelization)

Model Validation

- Immersion tests in simulated body fluid (SBF) and saline (NaCl) solutions
- Measuring mass loss indirectly via measuring the formed hydrogen
- The global pH is monitored and used to validate the model

Simulation Setup

- A narrow cuboid of Mg in SBF/Saline solutions
- Simulating 21 hours of degradation
- ~18,000,000 elements (DoF of ~3,000,000)
- Parallelized using 170 computing nodes

Simulation Results - Degradation

Release of Mg ions

Formation of the protective film

Simulation Results - Degradation

Simulation Results - Degradation (GPU Rendered)

Simulation Results - pH Change

High diffusion (NaCl solution)

Low diffusion (SBF solution)

Quantitative Results

SBF

Details of the Parallelization Approach

- Distributing the mesh among available resources
 - High-performance mesh decomposition
 - Overlapping Schwarz method
- Solving the linear system of equations
 - HYPRE preconditioner
 - GMRES iterative solver

High-performance Mesh Decomposition

- Mesh is decomposed using overlapping Schwarz preconditioner
- Each partition is assigned to one CPU core (MPI process)

Solution of the Linear System

- Finite element formulation leads to a linear system of equations
- Krylov methods and preconditioning facilitate convergence and speed
- GMRES iterative solver to solve the sparse system

 $M^{-1}Ax = M^{-1}b$

Performance Analysis

- Similar setup with a thicker block
- Only 3 PDEs are solved (Mg, film formation, and level set)
- DOF for each PDE ~ 144,000
- Elements ~ 831,000

Parallelization Benchmark

- Weak scaling (doubling the problem size while doubling the resources)
- Strong scaling (keeping the problem size constant and doubling the resources)

Weak Scaling Analysis

KU LEUVEN

Strong Scaling Analysis

Conclusion

- A quantitative mathematical model to assess the degradation behavior of biodegradable metallic implants in-silico
- Appropriate parallel efficiency and linear scalability of the employed parallelization approach in performance evaluation tests
- The model can be an important tool to find the biodegradable metals properties and predict the biodegradation behavior of implants that improves current workflows of designing them

Thank you for your attention

This research is financially supported by the PROSPEROS project, funded by the Interreg VA Flanders - The Netherlands program

