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• Mg, Zn, and Fe

• Great mechanical properties

• Biocompatibility and contribution in metabolism

• Potential applications:

• Cardiovascular stents

• Orthopedic implants
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Biodegradable Metals



• Acetabular implants

• Total hip replacement

• Considering biodegradation behavior

beside optimizing mechanical stability
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Background

(Source: 3D Systems Inc.)



• Implants should be removed at the end of their lifetime

• Some extra bone is also removed along with the implant

• Making at least part of the implant from biodegradable materials
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Problem Definition

(Source: 3D Systems Inc.)



• Challenge:

• Tuning the biodegradation to the regeneration of the new bone

• Can be solved by:

• Mathematical modeling of biodegradation

• Coupling biodegradation models with tissue growth models 

• Considering environmental effects
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Objective
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Model Workflow

Underlying Science Mathematical Models Computational Models

Finite difference method

Finite element method

Scientific computing libraries

Open source solvers

Partial differential equations

Reaction-Diffusion-Convection

Level set method

Chemistry of biodegradation

Physics of perfusion

Biology of tissue growth



The model captures:

1. The chemistry of dissolution of metallic implant 

2. Formation of a protective film

3. Effect of ions in the medium

4. Change of pH
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Chemistry of Biodegradation
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Mathematical Representation
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Derived Partial Differential Equations

Chemical reactions
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Capturing the Biodegradation Interface
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• Not feasible to implement models in sophisticated software packages

• Discretizing PDE equations, numerical computation

• Finite difference method (time derivatives)

• Finite element method (spatial derivatives)

• Adaptively refined mesh generation
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Constructing Computational Model



• Mesh generation (SALOME, MMG), #Element ~ 10,000,000

• Weak form implementation (FreeFEM), #DoF ~ 2,000,000

• Parallelization is essential

• High-performance domain decomposition (HPDDM)

• High-performance preconditioners and solvers (PETSc)

• Paralleled IO postprocessing (ParaView)
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Implementing Computational Model



• Sensitivity analysis to get the important

parameters in different diffusion regimes

• Using a Bayesian optimization algorithm

for estimating the effective parameters

• Each optimization iteration takes several

hours to complete (another reason for 

the necessity of parallelization)
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Model Parameters Estimation



• Immersion tests in simulated body

fluid (SBF) and saline (NaCl) solutions

• Measuring mass loss indirectly via 

measuring the formed hydrogen

• The global pH is monitored and used

to validate the model
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Model Validation

(Mei et al., Corrosion Science, 2019)



• A narrow cuboid of Mg in SBF/Saline solutions

• Simulating 21 hours of degradation

• ~18,000,000 elements (DoF of ~3,000,000)

• Parallelized using 170 computing nodes

14

Simulation Setup
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Simulation Results - Degradation

Release of Mg ions Formation of the protective film
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Simulation Results - Degradation
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Simulation Results - Degradation (GPU Rendered)
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Simulation Results - pH Change

High diffusion (NaCl solution) Low diffusion (SBF solution)
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Quantitative Results 



• Distributing the mesh among available resources

• High-performance mesh decomposition

• Overlapping Schwarz method

• Solving the linear system of equations

• HYPRE preconditioner

• GMRES iterative solver
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Details of the Parallelization Approach



• Mesh is decomposed using overlapping Schwarz preconditioner

• Each partition is assigned to one CPU core (MPI process)
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High-performance Mesh Decomposition



• Finite element formulation leads to a linear system of equations

• Krylov methods and preconditioning facilitate convergence and speed

• GMRES iterative solver to solve the sparse system
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Solution of the Linear System

𝐴𝑥 = 𝑏𝑀−1 𝑀−1



• Similar setup with a thicker block

• Only 3 PDEs are solved (Mg, film formation, and level set)

• DOF for each PDE ~ 144,000

• Elements ~ 831,000
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Performance Analysis



• Weak scaling (doubling the problem size while doubling the resources)

• Strong scaling (keeping the problem size constant and doubling the resources)
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Parallelization Benchmark

Problem size

Mesh partitioned to 

available CPU cores

1 core 2 cores 4 cores 8 cores
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Weak Scaling Analysis
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Strong Scaling Analysis



• A quantitative mathematical model to assess the degradation behavior of 

biodegradable metallic implants in-silico

• Appropriate parallel efficiency and linear scalability of the employed 

parallelization approach in performance evaluation tests

• The model can be an important tool to find the biodegradable metals 

properties and predict the biodegradation behavior of implants that improves 

current workflows of designing them
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Conclusion
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