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• Mg, Zn, and Fe

• Gradually disappear/absorbed and 

replaced by new tissue/bone

• Great mechanical/biological properties

• The controlled release is an issue for 

different types of implants

• The degradation behavior should be 

tuned/optimized for various applications
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Biodegradable Metals

(Han et al., Mater. Today, 23, 2019)



• Challenge:

• Tuning the biodegradation to the regeneration of the new tissue/bone

• Can be solved by:

• Mathematical modeling of biodegradation

• Coupling biodegradation models with tissue growth models 

• Considering environmental effects
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Problem Definition
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Modeling Workflow

Underlying Science Mathematical Models Computational Models

Finite element method

Finite difference method

Scientific computing libraries

Open source solvers

Partial differential equations

Reaction-Diffusion-Convection

Navier-Stokes equations

Level set method

Chemistry of biodegradation

Physics of perfusion

Biology of tissue growth



The model captures:

1. The chemistry of 

dissolution of 

metallic implant 

2. Formation of a 

protective film

3. Effect of ions in 

the medium

4. Change of pH
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Chemistry of Biodegradation
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Mathematical Representation
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Derived Partial Differential Equations

Chemical reactions
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State variables

𝐶Mg = 𝐶Mg 𝐱, 𝑡 𝐶Film= 𝐶Film(𝐱, 𝑡)

𝐶Cl = 𝐶Cl 𝐱, 𝑡 𝐶OH= 𝐶OH 𝐱, 𝑡 𝐱 ∈ Ω ⊂ ℝ3



• Formed protective film is a porous material

• Effective diffusion coefficients can be calculated by interpolation
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Calculating Effective Diffusion Coefficients
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• Identifying interface is crucial in this research

• Mathematical representation of the interface
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Capturing the Moving Interface
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Capturing the Biodegradation Interface
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• Implicit moving interface tracking

• Level set method
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Constraints and BCs

• Interface tracking

• Magnesium ion transport

• Protective film formation

• Chloride ion transport

• Hydroxide ion transport

Metal bulk

Medium

𝜙 𝑥 > 0

𝜙 𝑥 < 0

𝜙 𝑥 = 0

Interface tracking

𝑉

Level set equation

Interface



• Discretizing PDE equations, numerical computation

• Finite difference method (temporal derivatives)

• Finite element method (spatial derivatives)

• Adaptively refined mesh generation (Euler mesh)
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Constructing Computational Model



• Mesh generation (SALOME, Mmg), #Element ~ 10,000,000

• Weak form implementation (FreeFEM), #DoF ~ 2,000,000

• Parallelization is essential

• High-performance domain decomposition (HPDDM)

• High-performance preconditioners and solvers (PETSc)

• Paralleled IO postprocessing (ParaView)
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Implementing Computational Model



• Penalization for interface BCs

• Problem of concentration oscillation

• Computing 𝛻𝑛𝐶Mg correctly

• Problem of re-distancing the distance 

function 𝜙

13

Level Set Implementation

(Bajger et al., Biomech. Model., 2017)

𝛻𝑛𝐶 =
)𝐶(𝐱 + ℎ. 𝑛) − 𝐶(𝐱 + 2ℎ. 𝑛

ℎ
,

𝐱 ∈ Ω ⊂ ℝ3



• Measuring mass loss:

• Direct weight reduction

• Side products evolution (hydrogen)

• Using level set output for calculating mass loss
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Computing Mass Loss - Degradation Rate

Mglost = න
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Verifying the correct behavior of:

• Mass transfer and ion release

• Level set surface tracking
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Verification of the Developed Model



• Sensitivity analysis to get the important

parameters in different diffusion regimes

• Using a Bayesian optimization algorithm

for estimating the effective parameters

• Each optimization iteration takes several

hours to complete (another reason for 

the necessity of parallelization)
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Model Parameters Estimation



• Immersion tests in simulated body

fluid (SBF) and saline (NaCl) solutions

• Measuring mass loss indirectly via 

measuring the formed hydrogen

• The global pH is monitored and used

to validate the model
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Model Validation

(Mei et al., Corrosion Science, 2019)



• A narrow cuboid of Mg in SBF/Saline solutions

• Simulating 21 hours of degradation

• ~18,000,000 elements (DoF of ~3,000,000)

• Parallelized using 170 computing nodes
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Simulation Setup
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Simulation Results - Degradation

Release of Mg ions Formation of the protective film
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Simulation Results - Degradation
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Simulation Results - pH Change

High diffusion 

(NaCl solution – high diffusion rate)

Low diffusion 

(SBF solution – low diffusion rate)
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Quantitative Results 



• Distributing the mesh among available resources

• High-performance mesh decomposition

• Overlapping Schwarz method

• Solving the linear system of equations

• HYPRE preconditioner

• GMRES iterative solver

23

A Bit of the Parallelization Details

𝐴𝑥 = 𝑏𝑀−1 𝑀−1



• Similar setup with a thicker block

• Only 3 PDEs are solved (Mg, film formation, and level set)

• DOF for each PDE ~ 144,000

• Elements ~ 831,000
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Performance Analysis



• Weak scaling (doubling the problem size while doubling the resources)

• Strong scaling (keeping the problem size constant and doubling the resources)

25

Parallelization Benchmark

Problem size

Mesh partitioned to 

available CPU cores

1 core 2 cores 4 cores 8 cores
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Weak Scaling Analysis
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Strong Scaling Analysis



• A quantitative mathematical model to assess the degradation behavior of 

biodegradable metallic biomaterials 

• Good agreement between the simulation predictions and experimentally 

obtained values for pH change

• The model can be an important tool to find the biodegradable metals 

properties and predict their biodegradation behavior
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Conclusion
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