



# Topology optimization of porous electrodes for redox flow batteries using the finite element method

Mojtaba Barzegari, Martin de Waal, Pedro de Carvalho, Antoni Forner-Cuenca

ModVal 2024 14 March 2024

# **Redox Flow Batteries (RFBs)**

- Inexpensive durable energy storage
- Cost efficiency for grid-scale
- Decoupled energy and power



#### **RFB Mechanism**







# **Electrodes: Performance-Defining Components**

- Where the redox processes occur
- Tailoring the electrodes to improve performance:







# **Engineering Porous Electrodes**

- What we want?
  - Surface area ↑
  - Mass transport ↑
  - Pressure drop  $\downarrow$
  - Electrochemical activity ↑
  - Mechanical stability ↑



# **Electrode Design via Engineering Optimization?**

• Inverse design of electrodes for maximizing performance



### **Modeling Workflow**





# **Computational Modeling of RFB Processes**



# **Different Length & Time Scales in RFBs**



Ye et al., Angew. Chem., 61 (2023) e202207580. De Lauri et al., ACS Appl. Energy Mater., 4 (2021) 13847. Ali et al., J. Energy Storage, 28 (2020) 101208. Ma et al., J. Electrochem. Soc., 165 (2018) A2209.

#### **RFBs as Multi-Physics Redox Systems**



## **Mathematical Modeling of RFBs**

$$\begin{cases} \rho \frac{\partial \mathbf{u}}{\partial t} + \rho(\mathbf{u} \cdot \nabla \mathbf{u}) - \mu \nabla^2 \mathbf{u} + \nabla p = 0\\ \nabla \cdot \mathbf{u} = 0 \end{cases}$$

$$\frac{\partial C_i}{\partial t} = \nabla . \left( D_i^e \nabla C_i \right) + R(C_i) - \nabla . \left( \mathbf{u} C_i \right) - \nabla . \left( \frac{\mathbf{z} F}{RT} C_i \nabla \phi \right)$$

$$\nabla . (\sigma \nabla \phi_s) = -\nabla . (\kappa \nabla \phi_l) = ai_n(\phi_s, \phi_l)$$

$$i_n(\phi_s, \phi_l) = \frac{i_0}{C_{\text{ref}}} \left[ C_R \exp\left(\frac{\alpha_A F}{RT} \Delta \phi\right) - C_O \exp\left(\frac{-\alpha_C F}{RT} \Delta \phi\right) \right]$$

 $\Delta \phi = \phi_s - \phi_l - U_0$ 

transport

transport

**Current collector** 

vionientun

transport

# **Constructing Computational Model**

- Half cell
- 2D and 3D geometries
- Finite element formulation
- High-performance computing



### **Modeling Workflow**





# **Topology Optimization of Porous Electrodes**



# **Optimization Model**

- Electrode as micro-porous material
- Skipping mass transfer effect
- Method of moving asymptotes
- Objective functions (normalized):
  - Power dissipation
  - Charge transferred on membrane





#### **2D Results without Fluid Flow**



Increasing applied current density

## **2D Results with Fluid Flow**



Increasing applied current density





Increasing solution conductivity

#### **3D Results**



e

IU

**Convergence History** 





## **Other Simulated Quantities**





### **Modeling Workflow**





# **Upscaling using Periodic Surfaces**



# **Triply Periodic Minimal Surfaces (TPMS)**

- Smooth surfaces
- Highly interconnected
  porous architectures
- Mathematical controllable geometry features
- Excellent transport properties



Feng et al., Int. J. Extreme Manuf., 4 (2022) 022001. Yeranee & Rao, Energies, 15 (2022) 8994.

# **Transforming Optimization Results**

• Converting variable porosity to TPMS infills



(Volume fraction)

(Distance function)

(TPMS infill)

#### **Conversion Results #1** (conductivity ↓, current density ↑)



#### **Conversion Results #2** (conductivity $\uparrow$ , current density $\downarrow$ )



#### **Employed Tools are all Open-Source!**





# Conclusion

- Numerical models for correlating local configuration/structure to overall redox cell performance
- Scalable topology optimization for engineering porous electrodes
- Manufacturability by transforming results Porous electrode (bulk)
  to TPMS infills



# **Thank You for Your Attention!**



mbarzegary.github.io

@MojBarz

fornercuencaresearch.com





