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• An interdisciplinary field that 

applies the principles of 

engineering and life sciences 

toward the development of 

biological substitutes that 

restore, maintain, or improve 

tissue function or a whole organ  
(Langer & Vacanti, 1994)

• Cell, carrier, and growth factors
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Tissue Engineering

(source: J.H. George)



• Islet transplantation to treat type 1 diabetes

• Proper preparation in a culturing process

• Viability of cultured islets is limited by hypoxia

(death due to lack of vascularization and oxygen)

• Pancreatic islets are vulnerable due to large size

• Putting islets into micro-devices inside wells

for gradient-driven oxygen diffusion
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Pancreatic Islets Transplantation

(sources: M.A. Naftanel et al., 2004, and K. Skrzypek et al., 2017)



• Challenge:

• Tuning the culture device such that it prevents hypoxia

• Can be solved by:

• Mathematical modeling of oxygen supply and consumption

• Coupling oxygen transport models with vascularization models 

• Simulating the models by solving the transient mathematical equations
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Problem Definition
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Modeling Workflow

Underlying Phenomena Mathematical Models Computational Models

Finite element method

Physics-informed neural 

networks

Partial differential equations

Reaction-Diffusion-Convection

Navier-Stokes equations

Oxygen consumption/supply

Hypoxia

Vascularization



• Converting the biological phenomena into mathematical forms

• Reaction-diffusion-convection partial differential equations (PDE)

• Oxygen transport equation:
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Constructing Mathematical Model
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Diffusion Convection Reaction



• Constructing the geometry

• Discretizing PDEs, finite element method

• Various techniques to linearize equations:

• Picard-relaxation

• Newton

• Requires a mesh to begin with

• Non-linear equations can become a problem
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Implementing Computational Model

Well

Islet



• Commonly-used techniques: finite element and finite difference methods

• Approximating the derivative terms and variational formulation

• What if we employ some techniques from machine learning (ML)?

• Embedding the physics into the ML model

• Physics-informed neural networks (PINN)
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Alternative Technique for Solving PDEs



• Handshaking of HPC and AI for mechanistic modeling

• Dealing with nonlinearity 

• Easier parameterization

• Enhanced inverse problems formulation

• PDE-constrained optimization

• Extensibility
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Why Physics-Informed Neural Networks?



• PINN models are deep 

neural network (NN) models 

in supervised learning 

• Approximating functions 

using NN models

• By automatic differentiation, 

the derivatives of the function 

can be approximated
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Core Idea of PINN Models

Input

Output

Moving forward

Error

Backward propagation
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Solving PDEs Using PINN Models
𝜕𝑐
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Training PINN Models

𝑢 𝑐 =
𝜕𝑐
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+ 𝛻. −𝐷𝛻𝑐 − 𝑅 𝑐 = 0
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• Defining the problem, the domain of interest, 

and the initial and boundary conditions
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Training PINN Models
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• Deriving the error for gradient descent
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Training PINN Models
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Training PINN Models

𝑥

𝑦

𝑡

Ƹ𝑐

𝜕

𝜕𝑡

𝜕2

𝜕𝑥2

𝜕2

𝜕𝑦2

𝑅(𝑐)

ො𝑢

𝑦 𝑥

𝑡

Error = 𝑀𝑆𝐸𝑢 +𝑀𝑆𝐸𝐼𝐶 +𝑀𝑆𝐸𝐵𝐶

𝑀𝑆𝐸𝐼𝐶

𝑀𝑆𝐸𝑢

𝑀𝑆𝐸𝐵𝐶

𝑢 𝑐 =
𝜕𝑐

𝜕𝑡
+ 𝛻. −𝐷𝛻𝑐 − 𝑅 𝑐 = 0

𝑐 = 𝑐 𝑥, 𝑦, 𝑡 , 𝑥, 𝑦 ∈ Ω, 𝑡 ∈ [0, 𝑇]
𝑐 𝑥, 𝑦, 0 = 𝑐𝐼𝐶 , 𝑥, 𝑦 ∈ Ω
𝑐 𝑥, 𝑦, 𝑡 = 𝑐𝐵𝐶 , 𝑥, 𝑦 ∈ Γ, 𝑡 ∈ [0, 𝑇]

• Deriving the error for gradient descent



• Implemented using TensorFlow and NVIDIA SimNet

• Different diffusion rates for cells and culture environment

• Heaviside formulation to track variable diffusion and initial conditions 

• Scaling and normalizing the problem is crucial

• Treating time becomes tricky for large time scales 
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Implementing PINN Model
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Finite Element Results

Circular wellRectangular well

• Oxygen concentration profiles showing consumption/supply
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PINN Results

Final stateTime as the Z axis

• Oxygen concentration profiles showing consumption/supply
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Numerical Simulation vs. PINN Solver

Final state using the 

finite element solver

Final state using 

the PINN solver
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Numerical Simulation vs. PINN Solver

Final state using the 

finite element solver

Final state using 

the PINN solver



• Implanting pancreatic islets into microwells to increase viability

• Mathematical and computational modeling of the oxygen consumption and 

supply to assess cell viability and hypoxia

• Physics-informed neural networks (PINN) to solve governing equations

• Demonstrating the PINN model’s equivalence to the traditional numerical 

schemes in this case 
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Conclusion



https://mbarzegary.github.io

Mojtaba.Barzegari@kuleuven.be

@MojBarz

@mbarzegary

Thank you for your attention!


