

Massively parallel finite element simulation of reaction-diffusion systems with moving boundaries: a use-case for biomaterials degradation modeling

Mojtaba Barzegari, Liesbet Geris

Biomechanics Section, Department of Mechanical Engineering, KU Leuven, Leuven, Belgium

Statement of Need & Basic Concepts

Biodegradable Metals

- Mg, Zn, and Fe
- Gradually disappear/absorbed and replaced by new tissue/bone
- Great mechanical/biological properties
- The controlled release profile is an issue for different types of implants
- The degradation behavior should be tuned/optimized for various applications

(Han et al., Mater. Today, 23, 2019)

Problem Definition

- Challenge:
 - Tuning the biodegradation to the regeneration of the new tissue/bone
 - Optimizing the implant design based on the release profile
- Can be solved by:
 - Mathematical modeling of biodegradation
 - Coupling biodegradation models with tissue growth models
 - Considering environmental effects

Modeling Workflow

Chemistry of Biodegradation

The model captures:

- 1. Dissolution of metallic implant
- 2. Formation of a protective film
- 3. Effect of ions in the medium
- 4. Change of pH

(Mei et al., Corrosion Science 171, 2020)

Constructing Mathematical Model

- Converting the chemical interaction into mathematical forms
- Reaction-diffusion-convection partial differential equations (PDE)
- An example for the transport of Mg ions

$$\frac{\partial C_{Mg}}{\partial t} = \nabla \left(D_{Mg}^{e} \nabla C_{Mg} \right) - \nabla \left(v C_{Mg} \right) - k_1 C_{Mg} \left(1 - \beta \frac{C_{Film}}{[Film]_{max}} \right) + k_2 C_{Film} C_{Cl}^2$$

Diffusion Convection Reaction

Capturing the Moving Boundary

- Implicit tracking of the moving corrosion front
- Level set method

PDE to solve:

$$\frac{\partial \phi}{\partial t} - \frac{D_{\text{Mg}}^{e} \nabla_{n} C_{\text{Mg}}}{[\text{Mg}]_{\text{sol}} - [\text{Mg}]_{\text{sat}}} |\nabla \phi| = 0$$

 $\phi = 0$ Interface $\phi < 0$ Medium $\phi > 0$ Block

Computational Model Implementation

Constructing Computational Model

- Discretizing PDE equations, numerical computation
 - Finite difference method (temporal derivatives)
 - Finite element method (spatial derivatives)
- Adaptively refined mesh generation (Euler mesh)

Implementing Computational Model

- Mesh generation (SALOME, Mmg), #Tetrahedra ~ 10M 20M
- Weak form implementation (FreeFEM), #DoF of each PDE ~ 2M 4M
- Parallelization is essential
 - High-performance domain decomposition (HPDDM)
 - High-performance preconditioners and solvers (PETSc)
- Paralleled IO postprocessing (ParaView)

Level Set Implementation

- Penalization for interface BCs
- Problem of concentration oscillation
- Computing $\nabla_n C_{Mg}$ correctly
- Problem of re-distancing the distance function ϕ

$$\nabla_n C = \frac{C(\mathbf{x} + h.n) - C(\mathbf{x} + 2h.n)}{h},$$
$$\mathbf{x} \in \Omega \subset \mathbb{R}^3$$

(Bajger et al., Biomech. Model., 2017)

Considering Convection

- Adding fluid flow and considering the effect of hydrodynamics condition
- Requires dealing with Navier-Stokes equations

$$\begin{cases} \rho \frac{\partial \mathbf{u}}{\partial t} + \rho (\mathbf{u} \cdot \nabla \mathbf{u}) - \mu \nabla^2 \mathbf{u} + \nabla p = 0\\ \nabla \cdot \mathbf{u} = 0 \end{cases}$$

- Implementing a parallel fluid flow code in FreeFEM (with fieldsplit preconditioner)
- Comparing the output of the CFD code with OpenFOAM (simpleFOAM)

Simulation Results

Orthopedics Screw Degradation

Porous Scaffold Degradation

Jaw Bone Plate Degradation

Narrow Cuboid

(Barzegari et al., Corrosion Science, 190, 2021)

Quantitative Results for Validation

(Barzegari et al., Corrosion Science, 190, 2021)

Degradation with Flow

High-Performance Computing

High-Performance Computing Approach

- Distributing the mesh among available resources
 - High-performance mesh decomposition
 - Overlapping Schwarz method
- Solving the linear system of equations
 - BoomerAMG preconditioner (for reaction-diffusion)
 - Fieldsplit preconditioner (for fluid flow)
 - GMRES iterative solver

High-performance Mesh Decomposition

- Mesh is decomposed using overlapping Schwarz preconditioner
- Each partition is assigned to one CPU core (MPI process)

Performance Analysis

- A setup with a thick block
- Only 3 PDEs are solved
- DOF for each PDE ~ 150K
- Elements ~ 900K

Parallelization Benchmark

- Weak scaling (doubling the problem size while doubling the resources)
- Strong scaling (keeping the problem size constant and doubling the resources)

KU LEUVEN

Weak Scaling Analysis

Gustafson's law

Speedup = $f + (1 - f) \times N$

- Sequential part: 18%
- Parallel part: 82%

Strong Scaling Analysis

- Sequential part: 1%
- Parallel part: 99%

Preconditioner/Solver Performance

Solving level set PDE Solving Mg PDE Solving film PDE

Software Development & Open-Source

BioDeg Software

- Multifunctional 3D simulation code for modeling biodegradation
- Cross-platform user interface
- Included pre- and post-processors
- FeeFEM/PETSc backend Qt/C++ frontend
- Available as an open-source software

nulation Setup	Ð	R	Running		
Geometry & Mesh Materials & BCs Solver Output	put	Sto	on simulation		
Material properties	Computational problem	1 size	Parallel computing info		
Material density (g/mm^3) 0.00173 Film density (g/mm^3) 0.00234	Degrees of Freedom (Number of elements in	DOF) for each equation: 110,119 the mesh: 640,249	Number of MPI processes: Average DOF in each MPI proces	6 ss: 23,451	
Saturation concentration (g/mm^3) 0.00013-	Simulation progress				
Film porosity 0.55	Current step:	13/81	Current time:	0.325/2	
Film tortuosity 1.00	•				16%
	Volume reduction (mas	is loss): 3.22 %			
Reaction-diffusion properties					3%
Metal ion diffusion coefficient (mm^2/hour) 0.05000	Current task				
Cl- ion diffusion coefficient (mm^2/hour) 0.05000	Task		Finished (last time) in		
OH- ion diffusion coefficient (mm^2/hour) 25.000	✓ Solving interface	tracking equation	1.92 seconds		
Film formation rate (1/hour) 7	Solving metal ion	transport equation	13.45 seconds		
Film disolution rate (mm^6/hour.g^2) 10^ 10	Solving Cl- ion tra	ansport equation	11.79 seconds		
	Solving film forma	ation and elimination equation	1.39 seconds		
Convection properties	Solving OH- ion t	ransport equation	13.20 seconds		
Dynamic viscosity 0.850	Solving fluid flow	equation			
Inlet velocity in X direction (mm/s) 0.10	Results visualization				
Inlet velocity in Y direction (mm/s) 0.00					
Inlet velocity in Z direction (mm/s) 0.00	Graphical output M	etal ions concentration View re	Plot mass	loss data	
Initial conditions		Mass loss plot		×	
Initial Cl-ion concentration (g/mm^3)					
2110a pri		2.76	Mass loss vs. time	_	
tput		2.07			5
	!				_
		1.38		_	
	-				
	-,	0.69			
l.					
		0.00			

Employed Tools are Open-Source

Hosted on GitHub

- BioDeg core (FreeFEM, PETSc)
- BioDeg UI (Qt, C++)
- BioDeg pre-processor (FreeFEM)
- BioDeg docs
- Coupled fluid flow code

A Final Note ©

- A project to share experiences on scientific computing using open-source tools
- More info: TuxRiders.com YouTube.com/TuxRiders

Thank you for your attention

https://mbarzegary.github.io

@MojBarz

This research was financially supported by the PROSPEROS project, funded by the Interreg VA Flanders - The Netherlands program