

Four years of scientific computing using FreeFEM in the field of computational biomedical engineering

Mojtaba Barzegari, Laura Lafuente-Gracia, Liesbet Geris

Biomechanics Section, Department of Mechanical Engineering,

KU Leuven, Leuven, Belgium

FreeFEM in Biomedical Engineering

- Computational biomechanics research unit (<u>http://www.biomech.ulg.ac.be/</u>)
- A wide range of models of tissue engineering processes
- FreeFEM benefited us due to:
 - Freedom in controlling finite element spaces
 - Open standards / exchange formats / interoperability
 - Integration with other tools (PETSc, HPDDM, Mmg, Tetgen, METIS, etc.)

Computational modeling of biodegradation process of metallic biomaterials

Biodegradable Metals

- Dissolve upon fulfilling the mission to assist tissue healing
- The degradation behavior should be tuned/optimized
- A set of reaction-diffusionadvection PDEs describing the chemistry of biodegradation
- Level-set for tracking the moving corrosion front

(Liu et al., Adv. Funct. Mater., 29, 2019)

Orthopedics Screw Degradation

Porous Scaffold Degradation

Narrow Cuboid

(Barzegari et al., Corrosion Science, 190, 2021)

BioDeg Software

- Multifunctional parallel 3D simulation code for modeling biodegradation
- Cross-platform user interface
- Included pre- and post-processors
- FreeFEM/PETSc backend Qt/C++ frontend
- Available as an open-source software

imulation Setup 🧬		Runnin	ng	
Geometry & Mesh Materials & BCs Solver	Output	Stop sim	ulation	
Material properties Material density (g/mm^3) Film density (g/mm^3)	01735	Computational problem size Degrees of Freedom (DOF) for each equation: 110,119 Number of elements in the mesh: 640,249	Parallel computing info Number of MPI processes: 6 Average DOF in each MPI process: 23,451	
Saturation concentration (g/mm^3) 0.000 Film porosity 0 Film tortuosity 1	0134 .55 🗣	Simulation progress Current step: 13 / 81 0	Current time: 0.325 / 2	16%
Reaction-diffusion properties		Volume reduction (mass loss): 3.22 %		3%
Cl-ion diffusion coefficient (mm^2/hour) 0.0 CH-ion diffusion coefficient (mm^2/hour) 25. Film formation rate (1/hour) 25. Film disolution rate (mm^6/hour.g^2) 10° Convection properties 10° Dynamic viscosity 0 Inlet velocity in X drection (mm/s) 0 Inlet velocity in Y direction (mm/s) 0 Inlet velocity in Z drection (mm/s) 0 Initial conditions 0	5000 000 7 € 10 € 1.10 .00	Current task Task Solving interface tracking equation Solving interface tracking equation Solving OL ion transport equation Solving OL-ion transport equation Solving Task Solving Task Solving Task Solving OL-ion transport equation Solving Solving OL-ion transport equation Solving Solving S	Finished (last time) in 1.92 seconds 13.45 seconds 1.79 seconds 13.20 seconds 13.20 seconds Plot mass loss data	
Initial CI-ion concentration (g/mm^3)	15175 .00 C	2.76 2.07 1.38 0.69 0.00 0.000 0.075	Mass loss va. tme	5

Model Integration

 Coupled models of topology optimization and metals corrosion for optimizing the shape of biodegradable infilled structures

Computational modeling of tissue regeneration and growth

Curvature-based Tissue Growth

- Cell growth on open porous scaffolds
- Effect of geometrical characteristics (pore size, shape, and curvature)
- Computational models of tissue regeneration process
- Modeling growth as a moving interface problem:
 - Level-set method
 - Phase-field method

(Guyot et al., Biomech Model Mechanobiol., 13, 2014)

Tissue Regeneration in Bioreactors

Tissue Growth on Various Scaffolds

(Van Hede et al., Adv. Funct. Mater., 32, 2022)

Parallel Implementation of Interface Tracking

Computational modeling of bone fracture healing

Repair Phase of Healing Process

- Bone fracture healing models to simulate the repair phase
- A set of taxis-diffusion-reaction PDEs for the evolution of cells, biochemical factors, and tissues
- Coupled with a cellular automaton model of blood vessels growth

(Lafuente-Gracia et al., Front. Bioeng. Biotechnol, 2021)

Bone Regeneration for Mandibular Defects

Vascular network & oxygen supply

Bone formation

Parallelized Coupled FE-CA Model

Bone formation

Vessels growth

- 0.6

- 0.4

- 0.2

_ 0.0e+00

Computational modeling of pancreatic cells viability

Pancreatic Cells Transplantation

- Islet transplantation to treat type 1 diabetes
- Vulnerability of cultured pancreatic islets
- Putting islets into micro-devices inside wells for gradient-driven oxygen supply
- Reaction-diffusion model for assessing viability of cells

(sources: M.A. Naftanel et al., 2004, and K. Skrzypek et al., 2017)

Single Micro-device Simulations

Islets Group, Multiple Wells

KU LEUVEN

Geometry construction and mesh generation

Implicit Mesh Constructions

- Applying an implicit function and trimming mesh using Mmg
- Various shapes suitable for tissue engineering scaffolds

Acetabular Cup Example

Embedding Mesh & Refinement

HPC case study: biodegradation simulation for a patient-specific implant

Porous Acetabular Cup

• The cup of hip implants, infilled with TPMS lattice structures to match a desired stiffness distribution

Simulation Setup

• Embedding the cup in a container and refine the mesh on its surface

The Computational Mesh

 Containing ~45M elements

Mesh Decomposition for HPC

• Partitioning the mesh to be distributed to 2K - 8K CPU cores

Degradation Behavior Result

 Visualization done using 128 CPU cores

Degradation Behavior Result

Strong Scaling Tests

Open science and outreach

Outreach & Educational Content

- Details of employed techniques in simplified language
- Trainings on open source computational modeling

http://TuxRiders.com

https://youtube.com/TuxRiders

Thank you for your attention

https://mbarzegary.github.io

MojBarz

KU LEUVEN