

High-performance simulation of biodegradation behavior of magnesium-based biomaterials

Mojtaba Barzegari Liesbet Geris Biomechanics Section, Department of Mechanical Engineering, KU Leuven, Leuven, Belgium

Biodegradable Metals

- Mg, Zn, and Fe
- Great mechanical properties
- Biocompatibility and contribution in metabolism
- Potential applications:
 - Cardiovascular stents
 - Orthopedic implants

An Example in Orthopedics

- Osteoarthritis
- Hip Osteoarthritis
- Total hip replacement

(https://www.arthritis-health.com/types/osteoarthritis/videos)

So What Is The Problem?

- Problem:
 - Tuning the degradation of the implant to the regeneration of the new bone
- Can be solved by:

Building a mathematical framework for the assessment of biodegradation

Model Workflow

Chemistry of Biodegradation

$$Mg \rightarrow Mg^{2+} + 2e^{-}$$

$$2H_2O + 2e^{-} \rightarrow H_2 + 2OH^{-}$$

$$Mg^{2+} + 2OH^{-} \rightarrow Mg(OH)_2$$

$$Mg(OH)_2 + 2Cl^{-} \rightarrow Mg(Cl)_2 + 2OH^{-}$$

$$\rightarrow Mg^{2+} + 2Cl^{-} + 2OH^{-}$$

Constructing Mathematical Model

The model captures:

- 1. The chemistry of dissolution of metallic implant
- 2. Formation of a protective film
- 3. Effect of ions in the medium

KU LEUVEN

Mathematical Representation

Chemical reactions Mg + 2H₂0 $\xrightarrow{k_1}$ Mg²⁺ + H₂ + 20H⁻ $\xrightarrow{k_1}$ Mg(OH)₂ + H₂

 $Mg(OH)_2 + 2Cl^{-} \xrightarrow{k_2} Mg^{2+} + 2Cl^{-} + 2OH^{-}$

Concentration notations $Mg^{2+} \Rightarrow [Mg]$ $Cl^{-} \Rightarrow [Cl]$ $Mg(OH)_2 \Rightarrow [Film]$

$$\begin{aligned} & \frac{\partial [Mg]}{\partial t} = \nabla \cdot \left(D_{Mg}^{e} \nabla [Mg] \right) - k_1 [Mg] \left(1 - \frac{[Film]}{[Film]_{max}} \right) + k_2 [Film] [Cl]^2 \\ & \frac{\partial [Film]}{\partial t} = k_1 [Mg] \left(1 - \frac{[Film]}{[Film]_{max}} \right) - k_2 [Film] [Cl]^2 \\ & \frac{\partial [Cl]}{\partial t} = \nabla \cdot \left(D_{Cl}^{e} \nabla [Cl] \right) \qquad ([Film]_{max} = \rho_{Mg(OH)_2} \times (1 - \epsilon)) \end{aligned}$$

Identifying Moving Biodegradation Interface

- Different approaches:
 - 1. Interface tracking methods
 - 2. Interface fitting methods
 - 3. Interface capturing methods

Interface Capturing using Implicit Interfaces

• Implicit interfaces can be defined by an implicit distance function

1D implicit function $\phi(x) = x^2 - 2$ 2D implicit function $\phi(x, y) = x^2 + y^2 - r^2$ $\phi = 0$ interface $\phi > 0$ outside $\phi < 0$ inside

Level Set Method

- A PDE to capture the moving implicit surface
- $\phi = \phi(x, y, z, t)$

Level Set Method for Biodegradation

Level set:

$$\frac{\partial \phi}{\partial t} + \mathbf{v} |\nabla \phi| = 0$$

Rankine-Hugoniot: $\{\mathbf{J}(x,t) - (c_{sol} - c_{sat})\mathbf{v}(x,t)\}$. n = 0

Mg scaffold: $D_{Mg}^e \nabla_n [Mg] - ([Mg]_{sol} - [Mg]_{sat})v = 0$

PDE to solve:

$$\frac{\partial \phi}{\partial t} - \frac{D_{Mg}^e \nabla_n [Mg]}{[Mg]_{sol} - [Mg]_{sat}} |\nabla \phi| = 0$$

Constructing Computational Model

- Not feasible to implement models in commercial software packages
- Discretizing PDE equations, numerical computation

 \circ Finite difference method (temporal terms)

Finite element method (spatial terms)

$$\frac{\partial [Mg]}{\partial t} = \nabla \cdot \left(D_{Mg}^{e} \nabla [Mg] \right) - k_1 [Mg] \left(1 - \frac{[Film]}{[Film]_{max}} \right) + k_2 [Film] [Cl]^2$$

$$\downarrow$$
Implicit backward Euler

1st order Lagrange polynomial as the basis function

Computational Mesh

- Euler Mesh
- High accuracy in the interface
- Refining the mesh adaptively

An Example of 3D Mesh

Implementing Computational Model

- Mesh generation (SALOME, TetGen)
- Weak form implementation (FreeFem++)
- Parallelization
 - Message Passing Interface (MPICH)
 - High-performance Domain Decomposition (HPDDM)
 - High-performance solvers (MUMPS, PETSc)

A typical 3D simulation: #Elements ~= 800,000 #DOF ~= 500,000

Verification of the code

Verifying the correct behavior of:

- Mass transfer and ion release
- Level set surface tracking

Convergence Studies

• Mesh and time step sensitivity

Time to Simulate 5 Days (Hour)

• Crucial for in-house codes

Formed Hydrogen Gas

Benchmarking parallelization

- Serial and parallel code should produce the same result
- Evaluating scale-up

(DOF: 44,663, MPI Cores: 4)

Run time of each time step

(DOF: 381,205, Elements: 2,233,524, MPI Cores: 4)

Calibration of the Model

- Different approaches to calibrate models
 - Mass loss
 - Formed hydrogen gas
- Obtaining reaction rates and diffusion coefficients

$$\frac{\partial [Mg]}{\partial t} = \nabla . \left(D_{Mg}^{e} \nabla [Mg] \right) - k_1 [Mg] \left(1 - \frac{[Film]}{[Film]_{max}} \right) + k_2 [Film] [Cl]^2$$
$$\frac{\partial [Film]}{\partial t} = k_1 [Mg] \left(1 - \frac{[Film]}{[Film]_{max}} \right) - k_2 F [Cl]^2$$
$$\frac{\partial [Cl]}{\partial t} = \nabla . \left(D_{Cl}^{e} \nabla [Cl] \right)$$

Experimental Data and Model Calibration

.07

+00

⁽Abidin et al., Corrosion Science, 2013)

Model Parameters Estimation

- Each simulation takes ~8 hours to run
- Using a Bayesian optimization algorithm
- Cost function is the RMSE of difference in experimental data and model output

Application for Porous Scaffolds

 Sample mesh based on a CT image of a porous Mg scaffold

2D Mg Scaffold – Film Formation

2D Mg Scaffold – Film Formation

2D Mg Scaffold – Film Formation

3D Porous Scaffold Degradation

Model Validation

- Validation is currently taking place
- We use another experimental setup to validate the model
- Models will be extended to capture pH changes, and that will be used for model validation

Conclusion

- A quantitative mathematical model to assess the degradation behavior of biodegradable metallic implants in-silico
- Once fully validated, the model will be an important tool to find the right design and properties of the magnesium-based implants

Thank you for your attention

This research is financially supported by the PROSPEROS project, funded by the Interreg VA Flanders - The Netherlands program

