





## Computational optimization and biodegradation of 3D-printed patient-specific acetabular implants

Mojtaba Barzegari Fernando Perez Boerema Liesbet Geris Biomechanics Section, Department of Mechanical Engineering, KU Leuven, Leuven, Belgium



Authors declare to have no conflict of interest.



### Patient-specific 3D Printed Implants

- · Gaining popularity in recent years
- Acetabular implants
- Design optimization
- Optimizing mechanical stability
- Considering biodegradation behavior



(Source: 3D Systems Inc.)



### **Bone Resorption in Current Implants**

- Underloading of the bone leads to bone resorption
- Mismatch between the bone and the implant stiffness causes implant failure



**Resting Bone** 

reversal

resting stat

mineralization

formation

resting stat

resorption

### **Bone Removal in Revision Surgeries**

- Implants should be removed at the end of their lifetime
- Some extra bone is also removed along with the implant
- Making at least part of the implant from biodegradable materials



### **Problem Definition**

- Challenges:
  - Optimization of material properties of the implant
  - Tuning the biodegradation behavior
- Can be solved by:
  - Topology optimization of the implant
  - Mathematical modeling of biodegradation





## **Topology Optimization**

- Two patient-specific models
- Maximize the long-term implant stability
- The difference of Strain Energy Density is used to evaluate the performance of the designs during the optimization





### Mathematical Model of Biodegradation

The model captures:

- 1. The chemistry of dissolution of metallic implant
- 2. Formation of a protective film
- 3. Effect of ions in the medium



**KU LEUVEN** 

#### **Optimization Results**





### **Biodegradation Results**







#### **Experimental Data and Model Calibration**

.07

+00





<sup>(</sup>Abidin et al., Corrosion Science, 2013)



#### Conclusion

- · We have developed in-silico models to investigate
  - Reduction of implant-induced stress shielding
  - Partially replacement of the implant over time
- Once validated and coupled, the models will serve as an important tool to find the appropriate biodegradable implant designs

# Thank you for your attention

This research is financially supported by the PROSPEROS project, funded by the Interreg VA Flanders - The Netherlands program





