

Mathematical investigation of corrosion behavior of bioabsorbable metals on the biodegradation interface

Mojtaba Barzegari, Liesbet Geris

Biomechanics Section, Department of Mechanical Engineering, KU Leuven, Leuven, Belgium

Statement of Need & Basic Concepts

Biodegradable Metals

- Mg, Zn, and Fe
- Gradually disappear/absorbed and replaced by new tissue/bone
- Great mechanical/biological properties
- The controlled release profile is an issue for different types of implants
- The degradation behavior should be tuned/optimized for various applications

(Han et al., Mater. Today, 23, 2019)

Problem Definition

- Challenge:
 - Tuning the biodegradation to the regeneration of the new tissue/bone
 - Optimizing the implant design based on the release profile
- Can be solved by:
 - Mathematical modeling of biodegradation
 - Coupling biodegradation models with tissue growth models
 - Considering environmental effects

Modeling Workflow

Biodegradation Framework

Chemistry of Biodegradation

The model captures:

- 1. The chemistry of dissolution of metallic implant
- 2. Formation of a protective film
- 3. Effect of ions in the medium
- 4. Change of pH

Constructing Mathematical Model

- Converting the chemical interaction into mathematical forms
- Reaction-diffusion-convection partial differential equations (PDE)
- An example for the transport of Mg ions

$$\frac{\partial C_{Mg}}{\partial t} = \nabla \left(D_{Mg}^{e} \nabla C_{Mg} \right) - \nabla \left(vC_{Mg} \right) - k_1 C_{Mg} \left(1 - \beta \frac{C_{Film}}{[Film]_{max}} \right) + k_2 C_{Film} C_{Cl}^2$$

Diffusion Convection Reaction

Constructing Computational Model

- Not feasible to implement models in sophisticated software packages
- Discretizing PDEs, finite element method
- Level-set for capturing the moving corrosion front
- Adaptively refined mesh generation

Implementing Computational Model

- Mesh generation (SALOME, Mmg), #Element ~ 10M 20M
- Weak form implementation (FreeFEM), #DoF ~ 2M 4M
- Parallelization is essential
 - High-performance domain decomposition (HPDDM)
 - High-performance preconditioners and solvers (PETSc)
- Paralleled IO postprocessing (ParaView)

Orthopedics Screw Degradation

Porous Scaffold Degradation

Jaw Bone Plate Degradation

Narrow Cuboid

(Barzegari et al., Corrosion Science, 190, 2021)

Global pH Change

High diffusion (Saline solution)

Low diffusion (Buffered solution)

(Barzegari et al., Corrosion Science, 190, 2021)

Quantitative Results for Validation

(Barzegari et al., Corrosion Science, 190, 2021)

Adding Perfusion Models (Fluid Flow)

Considering Convection

- Adding fluid flow and considering the effect of hydrodynamics condition
- Requires dealing with Navier-Stokes equations

$$\begin{cases} \rho \frac{\partial \mathbf{u}}{\partial t} + \rho(\mathbf{u} \cdot \nabla \mathbf{u}) - \mu \nabla^2 \mathbf{u} + \nabla p = 0\\ \nabla \cdot \mathbf{u} = 0 \end{cases}$$

- Implementing a parallel fluid flow code in FreeFEM
- Comparing the output of the CFD code with OpenFOAM (simpleFOAM)

Perfusion Case Simulation Setup

Degradation in hydrodynamics condition, measuring the local pH

(Wang et al., Corrosion Science, 197, 2022)

Comparing Fluid Results with OpenFOAM

• Fluid velocity magnitude (top: in-house code, bottom: OpenFOAM)

Comparing Fluid Results with OpenFOAM

• Streamlines, top view (top: In-house code, bottom: OpenFOAM)

Simulation Results – Degradation with Flow

Detailed Model for Local Measurements

Local pH Change (T=25°C)

Result from top view

Result from side view

Local pH Change (T=37°C)

Result from top view

Result from side view

Local pH Changes over Time

Blue: 25°C Red: 37°C

Tissue Growth Models

Curvature-based Tissue Growth

- Cell growth on open porous scaffolds
- Effect of geometrical characteristics (pore size, shape, and curvature)
- Computational models for the growth of neotissue and cell proliferation process
- Modeling growth as a moving interface problem

(Guyot et al., Biomech Model Mechanobiol., 13, 2014)

Capturing the Tissue Growth Interface

Phase field equation for growth

$$\frac{\partial \phi}{\partial t} = b \left[\nabla^2 \phi + \frac{\phi (1 - \phi^2)}{W^2} \right] \cdot \mathbf{H} \left(\nabla^2 \phi + \frac{\phi (1 - \phi^2)}{W^2} \right)$$

Capturing the Biodegradation Interface

Level set equation

$$\frac{\partial \psi}{\partial t} - \frac{D_{\rm Mg}^e \nabla_n C_{\rm Mg}}{[{\rm Mg}]_{\rm sol} - [{\rm Mg}]_{\rm sat}} |\nabla \psi| = 0$$

Combining Both Interfaces Together

• Having tissue growth on a degrading scaffold

Software Development & Open-Source

BioDeg Software

- Multifunctional 3D simulation code for modeling biodegradation
- Cross-platform user interface
- Included pre- and post-processors
- FeeFEM/PETSc backend Qt/C++ frontend
- Available as an open-source software

nulation Setup	Ð	R	Running		
Geometry & Mesh Materials & BCs Solver Output	put	Sto	on simulation		
Material properties	Computational problem	1 size	Parallel computing info		
Material density (g/mm^3) 0.00173 Film density (g/mm^3) 0.00234	Degrees of Freedom (Number of elements in	DOF) for each equation: 110,119 the mesh: 640,249	Number of MPI processes: Average DOF in each MPI proces	6 ss: 23,451	
Saturation concentration (g/mm^3) 0.00013-	Simulation progress				
Film porosity 0.55	Current step:	13/81	Current time:	0.325/2	
Film tortuosity 1.00	•				16%
	Volume reduction (mas	is loss): 3.22 %			
Reaction-diffusion properties					3%
Metal ion diffusion coefficient (mm^2/hour) 0.05000	Current task				
Cl- ion diffusion coefficient (mm^2/hour) 0.05000	Task		Finished (last time) in		
OH- ion diffusion coefficient (mm^2/hour) 25.000	✓ Solving interface	tracking equation	1.92 seconds		
Film formation rate (1/hour) 7	Solving metal ion	transport equation	13.45 seconds		
Film disolution rate (mm^6/hour.g^2) 10^ 10	Solving Cl- ion tra	ansport equation	11.79 seconds		
	Solving film forma	ation and elimination equation	1.39 seconds		
Convection properties	Solving OH- ion t	ransport equation	13.20 seconds		
Dynamic viscosity 0.850	Solving fluid flow	equation			
Inlet velocity in X direction (mm/s) 0.10	Results visualization				
Inlet velocity in Y direction (mm/s) 0.00					
Inlet velocity in Z direction (mm/s) 0.00	Graphical output M	etal ions concentration View re	Plot mass	loss data	
Initial conditions		Mass loss plot		×	
Initial Cl-ion concentration (g/mm^3)					
2110a pri		2.76	Mass loss vs. time	_	
tput		2.07			5
	!				_
		1.38		_	
	-				
	-,	0.69			
l.					
		0.00			

Employed Tools are Open-Source

Hosted on GitHub

- BioDeg core (FreeFEM, PETSc)
- BioDeg UI (Qt, C++)
- BioDeg pre-processor (FreeFEM)
- BioDeg docs
- Coupled fluid flow code

Thank you for your attention

https://mbarzegary.github.io

MojBarz

This research was financially supported by the PROSPEROS project, funded by the Interreg VA Flanders - The Netherlands program