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• Driven by need for more computing power

• Leveraging (distributed) compute resources to solve complex problems 

• Computations in parallel over lots of compute elements (software)

• Very fast network to connect compute elements (hardware)

• Why do we need HPC?

• Complete a time-consuming 

operation in less time

• Perform a high number of 

operations per seconds
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High-Performance Computing (HPC)

(source: tech.eu)



• Physics, astrophysics

• Bioscience, genomics, bioinformatics

• Artificial intelligence

• Chemistry, molecular sciences

• Computer aided engineering

• Computer science, mathematics

• Big data analytics

• Financial and economic modeling

• Weather and climate

• Cyber security

• Advanced graphics

• …
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Typical HPC Workloads



• Solving more complex problems in less time

• Scale up

• Faster CPUs

• Larger memories

• More advanced hardware/software

• Scale out

• Large parallel applications

• Many small- to medium- size jobs
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Supercomputing in Computational Sciences

(source: turbonomic.com)



• Parallelism is available at many levels

• All HPC machines are parallel architectures

• Two fundamental parallel architectures:

• Shared memory systems

• Distributed memory systems

• Scaling benchmark matters a lot!
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Synonymous to Parallel Computing

(source: explainthatstuff.com)



• Much effort is put into model credibility and regulatory context of the 

simulation predictions 

• Scalability of models to benefit from rapidly growing computing power

• The potential impact of HPC:

• employing more quantities of data or parameters

• using them to perform predictive modelling and simulation 

• in order to deliver therapies and to enhance clinical decision making

• on time scales far shorter than those in academic research activities
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HPC in Biomedicine and Biomedical Engineering



• The role that open-source movement has played is undeniable 

• Freedom and flexibility in HPC 

• Huge number of relevant programs and libraries

• Operating system and system tools

• Job scheduling and load balancing systems

• High-performance libraries, tools, and solvers

• Most scientific contributions and codes are open-source
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Role of Free and Open Source Software
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Computational modeling of 

biodegradation behavior of 

degradable metals
A high-performance computing project use-case



• Mg, Zn, and Fe

• Gradually disappear/absorbed and 

replaced by new tissue/bone

• Great mechanical/biological properties

• The controlled release profile is an issue 

for different types of implants

• The degradation behavior should be 

tuned/optimized for various applications
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Biodegradable Metals

(Han et al., Mater. Today, 23, 2019)



• Challenge:

• Tuning the biodegradation to the regeneration of the new tissue/bone

• Can be solved by:

• Mathematical modeling of biodegradation

• Coupling biodegradation models with tissue growth models 

• Considering environmental effects
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Problem Definition
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Modeling Workflow

Underlying Science Mathematical Models Computational Models

Finite element method

Finite difference method

Scientific computing libraries

Open source solvers

Partial differential equations

Reaction-Diffusion-Convection

Navier-Stokes equations

Level set method

Chemistry of biodegradation

Physics of perfusion

Biology of tissue growth



The model captures:

1. Dissolution of 

metallic implant 

2. Formation of a 

protective film

3. Effect of ions in 

the medium

4. Change of pH
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Chemistry of Biodegradation

(Mei et al., Corrosion Science 171, 2020)



• Converting the chemical interaction into mathematical forms

• Reaction-diffusion-convection partial differential equations (PDE)

• An example for the transport of Mg ions
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Constructing Mathematical Model

𝜕𝐶Mg

𝜕𝑡
= 𝛻. 𝐷Mg

𝑒 𝛻𝐶Mg − 𝛻. v𝐶Mg − 𝑘1𝐶Mg 1 − 𝛽
𝐶Film

Film max
+ 𝑘2𝐶Film𝐶Cl
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Diffusion Convection Reaction



• Not feasible to implement models in sophisticated software packages

• Discretizing PDEs, finite element method

• Level-set for capturing the moving corrosion front

• Adaptively refined mesh generation
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Constructing Computational Model



• Mesh generation (SALOME, Mmg), #Element ~ 10M – 20M

• Weak form implementation (FreeFEM), #DoF ~ 2M – 4M

• Parallelization is essential

• High-performance domain decomposition (HPDDM)

• High-performance preconditioners and solvers (PETSc)

• Paralleled IO postprocessing (ParaView)
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Implementing Computational Model
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Simple Screw Degradation
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Jaw Bone Plate Degradation
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Narrow Cuboid Degradation

Release of Mg ions Formation of the protective film

(Barzegari et al., Corrosion Science, 190, 2021)
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Simulation Results - Degradation

(Barzegari et al., Corrosion Science, 190, 2021)
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Simulation Results - pH Change

High diffusion (Saline solution) Low diffusion (Buffered solution)

(Barzegari et al., Corrosion Science, 190, 2021)
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Quantitative Results 

(Barzegari et al., Corrosion Science, 190, 2021)



• Distributing the mesh among available resources

• High-performance mesh decomposition

• Overlapping Schwarz method

• Solving the linear system of equations

• BoomerAMG preconditioner

• GMRES iterative solver

• Fieldsplit for fluid flow
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High-Performance Computing Approach



• Mesh is decomposed using overlapping Schwarz preconditioner

• Each partition is assigned to one CPU core (MPI process)
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High-performance Mesh Decomposition



• A setup with a thick block

• Only 3 PDEs are solved

• DOF for each PDE ~ 150K

• Elements ~ 900K
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Performance Analysis

(Barzegari et al., International Journal of High Performance Computing Applications, 35, 2021)



• Weak scaling (doubling the problem size while doubling the resources)

• Strong scaling (keeping the problem size constant and doubling the resources)
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Parallelization Benchmark

Problem size

Mesh partitioned to 

available CPU cores

1 core 2 cores 4 cores 8 cores
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Weak Scaling Analysis

(Barzegari et al., International Journal of High Performance Computing Applications, 35, 2021)

Speedup = 𝑓 + 1 − 𝑓 × 𝑁

Gustafson’s law

• Sequential part: 18%

• Parallel part: 82%
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Strong Scaling Analysis

(Barzegari et al., International Journal of High Performance Computing Applications, 35, 2021)

Speedup =
1

𝑓 +
1 − 𝑓
𝑁

Amdahl’s law

• Sequential part: 1%

• Parallel part: 99%
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Preconditioner/Solver Performance

(Barzegari et al., International Journal of High Performance Computing Applications, 35, 2021)
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Developed Code & Employed Tools are Open-Source

Mesh Generation

• TetGen

• GMSH

• SALOME

• MMG

CAD Design

• SALOME

• FreeCAD

Sparse Solvers

• MUMPS

• PETSc

(GMRES)

Postprocessing

• ParaView

• Medit

• Seaborn

Parallelization

• OpenMPI

• MPICH

Partitioning

• HPDDM

• ParMETIS

PDE Solvers

• FreeFEM

Preconditioning

• HYPRE

• PETSc

(fieldsplit)

Optimization

• HyperOpt

• Spark

FE Solvers

• Code Aster

https://github.com/mbarzegary/BioDeg



• The importance of high-performance computing in computational modeling 

works in the field of biomedical engineering

• Use-case: a quantitative computational model to assess the degradation 

behavior of biodegradable metallic implants in-silico

• Performance evaluation tests to measure the parallel efficiency and linear 

scalability of the employed parallelization approaches
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Conclusion



https://mbarzegary.github.io

Mojtaba.Barzegari@kuleuven.be

@MojBarz

@mbarzegary

Thank you for your attention!


