

High-Performance Computing in Biomedical Engineering; a Use-case for Biomaterials Degradation Modeling

Mojtaba Barzegari, Liesbet Geris

Biomechanics Section, Department of Mechanical Engineering, KU Leuven, Leuven, Belgium

High-Performance Computing (HPC)

- Driven by need for more computing power
- Leveraging (distributed) compute resources to solve complex problems
- Computations in parallel over lots of compute elements (software)
- Very fast network to connect compute elements (hardware)
- Why do we need HPC?
 - Complete a time-consuming operation in less time
 - Perform a high number of operations per seconds

Typical HPC Workloads

• Physics, astrophysics

- Big data analytics
- Bioscience, genomics, bioinformatics Financial and economic modeling
- Artificial intelligence
- Chemistry, molecular sciences
- Computer aided engineering
- Computer science, mathematics

- Weather and climate
- Cyber security
- Advanced graphics
-

Supercomputing in Computational Sciences

- Solving more complex problems in less time
- Scale up
 - Faster CPUs
 - Larger memories
 - More advanced hardware/software
- Scale out
 - Large parallel applications
 - Many small- to medium- size jobs

Scale-up

(source: turbonomic.com)

Synonymous to Parallel Computing

- Parallelism is available at many levels
- All HPC machines are parallel architectures
- Two fundamental parallel architectures:
 - Shared memory systems
 - Distributed memory systems
- Scaling benchmark matters a lot!

(source: explainthatstuff.com)

HPC in Biomedicine and Biomedical Engineering

- Much effort is put into model credibility and regulatory context of the simulation predictions
- Scalability of models to benefit from rapidly growing computing power
- The potential impact of HPC:
 - employing more quantities of data or parameters
 - using them to perform predictive modelling and simulation
 - in order to deliver therapies and to enhance clinical decision making
 - on time scales far shorter than those in academic research activities

Role of Free and Open Source Software

- The role that open-source movement has played is undeniable
- Freedom and flexibility in HPC
- Huge number of relevant programs and libraries
 - Operating system and system tools
 - Job scheduling and load balancing systems
 - High-performance libraries, tools, and solvers
- Most scientific contributions and codes are open-source

Computational modeling of biodegradation behavior of degradable metals

A high-performance computing project use-case

Biodegradable Metals

- Mg, Zn, and Fe
- Gradually disappear/absorbed and replaced by new tissue/bone
- Great mechanical/biological properties
- The controlled release profile is an issue for different types of implants
- The degradation behavior should be tuned/optimized for various applications

(Han et al., Mater. Today, 23, 2019)

Problem Definition

- Challenge:
 - Tuning the biodegradation to the regeneration of the new tissue/bone
- Can be solved by:
 - Mathematical modeling of biodegradation
 - Coupling biodegradation models with tissue growth models
 - Considering environmental effects

Modeling Workflow

Chemistry of Biodegradation

The model captures:

- 1. Dissolution of metallic implant
- 2. Formation of a protective film
- 3. Effect of ions in the medium
- 4. Change of pH

(Mei et al., Corrosion Science 171, 2020)

Constructing Mathematical Model

- Converting the chemical interaction into mathematical forms
- Reaction-diffusion-convection partial differential equations (PDE)
- An example for the transport of Mg ions

$$\frac{\partial C_{Mg}}{\partial t} = \nabla \left(D_{Mg}^{e} \nabla C_{Mg} \right) - \nabla \left(vC_{Mg} \right) - k_1 C_{Mg} \left(1 - \beta \frac{C_{Film}}{[Film]_{max}} \right) + k_2 C_{Film} C_{Cl}^2$$

Diffusion Convection Reaction

Constructing Computational Model

- Not feasible to implement models in sophisticated software packages
- Discretizing PDEs, finite element method
- Level-set for capturing the moving corrosion front
- Adaptively refined mesh generation

Implementing Computational Model

- Mesh generation (SALOME, Mmg), #Element ~ 10M 20M
- Weak form implementation (FreeFEM), #DoF ~ 2M 4M
- Parallelization is essential
 - High-performance domain decomposition (HPDDM)
 - High-performance preconditioners and solvers (PETSc)
- Paralleled IO postprocessing (ParaView)

Simple Screw Degradation

Jaw Bone Plate Degradation

Narrow Cuboid Degradation

Release of Mg ions

Formation of the protective film

Simulation Results - Degradation

Simulation Results - pH Change

High diffusion (Saline solution)

Low diffusion (Buffered solution)

Quantitative Results

High-Performance Computing Approach

- Distributing the mesh among available resources
 - High-performance mesh decomposition
 - Overlapping Schwarz method
- Solving the linear system of equations
 - BoomerAMG preconditioner
 - GMRES iterative solver
 - Fieldsplit for fluid flow

High-performance Mesh Decomposition

- Mesh is decomposed using overlapping Schwarz preconditioner
- Each partition is assigned to one CPU core (MPI process)

Performance Analysis

- A setup with a thick block
- Only 3 PDEs are solved
- DOF for each PDE ~ 150K
- Elements ~ 900K

Parallelization Benchmark

- Weak scaling (doubling the problem size while doubling the resources)
- Strong scaling (keeping the problem size constant and doubling the resources)

KU LEUVEN

Weak Scaling Analysis

Gustafson's law

Speedup = $f + (1 - f) \times N$

- Sequential part: 18%
- Parallel part: 82%

Strong Scaling Analysis

- Sequential part: 1%
- Parallel part: 99%

Preconditioner/Solver Performance

Solving level set PDE Solving Mg PDE Solving film PDE

Developed Code & Employed Tools are Open-Source

Conclusion

- The importance of high-performance computing in computational modeling works in the field of biomedical engineering
- Use-case: a quantitative computational model to assess the degradation behavior of biodegradable metallic implants in-silico
- Performance evaluation tests to measure the parallel efficiency and linear scalability of the employed parallelization approaches

Thank you for your attention!

https://mbarzegary.github.io
Mojtaba.Barzegari@kuleuven.be
@MojBarz
@mbarzegary