

Computational Modeling in Tissue Engineering; Case Studies for Tissue Growth and Degradable Scaffolds

Mojtaba Barzegari, Liesbet Geris

Biomechanics Section, Department of Mechanical Engineering, KU Leuven, Leuven, Belgium

Computational Tissue Engineering

- Taking advantage of:
 - Development on mathematical physics/chemistry/biology
 - Rapidly growing computing power and advancements
- Using computer models for:
 - Optimizing TE products
 - Optimizing TE processes
 - Assessing the influence of *in-vitro/in-vivo* environment on the behavior of TE products virtually

(source: tech.eu)

Various Model Types

- Data-driven or based on first principles
- Deterministic or stochastic
- Mechanistic or phenomenological

KU LEUVEN

Example on Bone Healing

- Multiscale modeling
- Stochastic model of tissue formation (in rats without BMP)
- Deterministic model of cell proliferation (in rats with BMP)
- Semi-mechanistic models for bone and cartilage growth (in mice)

(Borgiani et al., Biomech Model Mechanobiol, 20, 2021)

Computational TE Workflows

Use Case for Biodegradable Implants and Scaffolds

Biodegradable Metals

- Mg, Zn, and Fe
- Gradually disappear/absorbed and replaced by new tissue/bone
- Great mechanical/biological properties
- The controlled release profile is an issue for different types of implants
- The degradation behavior should be tuned/optimized for various applications

(Han et al., Mater. Today, 23, 2019)

Building Material Biodegradation Model

Orthopedics Screw Degradation

Porous Scaffold Degradation

Jaw Bone Plate Degradation

Simulation Results - Degradation

(Barzegari et al., Corrosion Science, 190, 2021)

Quantitative Results for Validation

(Barzegari et al., Corrosion Science, 190, 2021)

Use Case for Tissue Growth on Open Porous Scaffolds

Tissue Growth Simulations

- Cell growth on open porous scaffolds
- Effect of geometrical characteristics (pore size, shape, and curvature)
- Computational models for the growth of neotissue and cell proliferation process
- Modeling growth as a moving interface
 problem

(Guyot et al., Biomech Model Mechanobiol., 15, 2016)

Building Tissue Growth Model

Capturing the Moving Interface

- Identifying interface is crucial
- Mathematical representation of the tissue/void interface

Curvature-based Tissue Growth

• Higher the curvature is, faster the tissue grow

Tissue Growth on Gyroid Scaffolds

(Van hede et al., Adv. Funct. Mater., 2021)

Validation

- Validating the models is sometimes the most difficult part
- Qualitative or quantitative

(Guyot et al., Biomech Model Mechanobiol., 13, 2014)

Conclusion

- Role of computational modeling and *in-silico* medicine in tissue engineering
- Use-case 1: a quantitative computational model to assess the degradation behavior of biodegradable metallic implants
- Use-case 2: a semi-quantitative computational model to investigate the neotissue growth in cell culture conditions
- Once fully validated, these approaches can save lots of resources by allowing performing experiments virtually

Thank you for your attention

https://mbarzegary.github.io

@MojBarz

This research was financially supported by the PROSPEROS project, funded by the Interreg VA Flanders - The Netherlands program